The most fundamental function in
runner
package is runner
. With
runner::runner
one can apply any R function on running
windows. This tutorial presents set of examples explaining how to tackle
some tasks. Some of the examples are referenced to original topic on stack-overflow.
library(runner)
# sample data
x <- cumsum(rnorm(20))
data <- data.frame(
date = Sys.Date() + cumsum(sample(1:3, 20, replace = TRUE)), # unequally spaced time series,
y = 3 * x + rnorm(20),
x = cumsum(rnorm(20))
)
# solution
data$pred <- runner(
data,
lag = "1 days",
k = "2 weeks",
idx = data$date,
f = function(data) {
predict(
lm(y ~ x, data = data)
)[nrow(data)]
}
)
plot(data$date, data$y, type = "l", col = "red")
lines(data$date, data$pred, col = "blue")
library(runner)
library(dplyr)
set.seed(3737)
df <- data.frame(
user_id = c(rep(27, 7), rep(11, 7)),
date = as.Date(rep(c(
"2016-01-01", "2016-01-03", "2016-01-05", "2016-01-07",
"2016-01-10", "2016-01-14", "2016-01-16"
), 2)),
value = round(rnorm(14, 15, 5), 1)
)
df %>%
group_by(user_id) %>%
mutate(
v_minus7 = sum_run(value, 7, idx = date),
v_minus14 = sum_run(value, 14, idx = date)
)
dplyr
library(runner)
library(dplyr)
df <- read.table(text = " user_id date category
27 2016-01-01 apple
27 2016-01-03 apple
27 2016-01-05 pear
27 2016-01-07 plum
27 2016-01-10 apple
27 2016-01-14 pear
27 2016-01-16 plum
11 2016-01-01 apple
11 2016-01-03 pear
11 2016-01-05 pear
11 2016-01-07 pear
11 2016-01-10 apple
11 2016-01-14 apple
11 2016-01-16 apple", header = TRUE)
df %>%
group_by(user_id) %>%
mutate(
distinct_7 = runner(category,
k = "7 days",
idx = as.Date(date),
f = function(x) length(unique(x))
),
distinct_14 = runner(category,
k = "14 days",
idx = as.Date(date),
f = function(x) length(unique(x))
)
)
library(dplyr)
x <- cumsum(rnorm(20))
y <- 3 * x + rnorm(20)
date <- Sys.Date() + cumsum(sample(1:3, 20, replace = TRUE)) # unequaly spaced time series
group <- rep(c("a", "b"), each = 10)
data.frame(date, group, y, x) %>%
group_by(group) %>%
run_by(idx = "date", k = "5 days") %>%
mutate(
alpha_5 = runner(
x = .,
f = function(x) {
coefficients(lm(x ~ y, x))[1]
}
),
beta_5 = runner(
x = .,
f = function(x) {
coefficients(lm(x ~ y, x))[1]
}
)
)
grouped_df
library(runner)
library(dplyr)
Date <- seq(
from = as.Date("2014-01-01"),
to = as.Date("2019-12-31"),
by = "day"
)
market_return <- c(rnorm(2191))
AAPL <- data.frame(
Company.name = "AAPL",
Date = Date,
market_return = market_return
)
MSFT <- data.frame(
Company.name = "MSFT",
Date = Date,
market_return = market_return
)
df <- rbind(AAPL, MSFT)
df$stock_return <- c(rnorm(4382))
df <- df[order(df$Date), ]
df2 <- data.frame(
Company.name2 = c(replicate(450, "AAPL"), replicate(450, "MSFT")),
Event_date = sample(
seq(as.Date("2015/01/01"),
as.Date("2019/12/31"),
by = "day"
),
size = 900
)
)
df2 %>%
group_by(Company.name2) %>%
mutate(
intercept = runner(
x = df[df$Company.name == Company.name2[1], ],
k = "180 days",
lag = "5 days",
idx = df$Date[df$Company.name == Company.name2[1]],
at = Event_date,
f = function(x) {
coef(
lm(stock_return ~ market_return, data = x)
)[1]
}
),
slope = runner(
x = df[df$Company.name == Company.name2[1], ],
k = "180 days",
lag = "5 days",
idx = df$Date[df$Company.name == Company.name2[1]],
at = Event_date,
f = function(x) {
coef(
lm(stock_return ~ market_return, data = x)
)[2]
}
)
)